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ABSTRACT 

The thermal power generation industry plays a crucial role in China's energy conservation and emission 

reduction strategy. To effectively assess the environmental efficiency of this industry, we utilize a super 

efficiency slacks-based measure directional distance function integrated model in this study. Additionally, we 

employ the Dagum Gini coefficient and its decomposition method, the spatial Markov chain method, and 

stochastic convergence test method to empirically analyze the disparities, distributed dynamic evolution, and 

convergence of environmental efficiency within China's thermal power industry. The study's findings reveal 

several key insights. Firstly, the overall environmental efficiency of the thermal power industry is improving, 

although regional disparities persist. Secondly, the gap in regional spatial distribution is decreasing, with 

inter-regional disparities being the primary source of the environmental efficiency gap in China. Thirdly, there 

is a significant spatial dependence in the environmental efficiency of China's thermal power industry. Lastly, 

the evolution of environmental efficiency within the thermal power industry follows a pattern of stochastic 

convergence. These results provide a strong basis for addressing the efficiency gap and contribute to 

enhancing the coordinated development of China's thermal power industry. 
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1. Introduction 

China's steadfast commitment to achieving high-quality development, characterized by a balanced approach 

to economic growth and environmental preservation, has garnered significant attention (Song et al., 2014). 

In pursuit of this objective, the Chinese government has implemented a comprehensive framework of laws, 

regulations, and strategic objectives dedicated to safeguarding the ecological environment, accompanied by 

a suite of incentive policies (Wang et al., 2018a; Hu, 2012). As corroborated by the BP World Energy 

Statistical Yearbook 2021, China's electric power system stands as the largest on the global stage, 

contributing to 29% of the world's total power generation in 2020 (BP, 2021). Notably, the thermal power 

industry holds a predominant position within China's power generation sector (Wang et al., 2018b), which, 

consequently, contributed to approximately 14.29% of the world's total carbon emissions resulting from 

fossil fuel combustion in the same year (CIEEC, 2021). Regrettably, this has led thermal power plants to 

emerge as the primary culprits of air pollution in the country (Huang et al., 2017). Specifically, coal power 

generation accounts for a substantial 89.42% of the total thermal power generation (NBSC, 2021) and, in 

turn, is responsible for the release of considerable amounts of harmful pollutants, including carbon dioxide 

(CO2) and sulfur dioxide (SO2). 

Enhancing environmental efficiency within the thermal power industry has become a matter of utmost 

significance and urgency. In this study, we commence by assessing the environmental efficiency through the 

implementation of the DEA (Data Envelopment Analysis) model. The DEA method serves as a popular tool 

for energy and environmental efficiency evaluations (Miao et al., 2021; Lv et al., 2021b; Halkos & 

Bampatsou, 2022). In this study, we propose the adoption of a super-efficiency SBM-DDF integrated model, 

which effectively addresses undesirable outputs, to evaluate the environmental efficiency of thermal power 

generation in China. This model is capable of distinguishing between efficient and inefficient outcomes, 

ultimately deriving super-efficiency results. 

As of 2020, the top 7 out of 30 provinces, municipalities, and autonomous regions in China accounted for 

more than 50% of the total thermal power generation (China Energy Statistical Yearbook, 2020). Nonetheless, 

the impact of environmental regulation varies significantly across these different regions, as highlighted by 

Xie and Li (2021), Xie and Zhou (2022), and Chen et al. (2021). The power industry in China possesses 

unique characteristics, such as an uneven distribution of natural resources and a partial mismatch between 

power generation and demand (Yang et al., 2015; Wang et al., 2014). By decomposing the Gini coefficient, 

the uneven characteristics and patterns can be revealed (Lau & Koo, 2022; Costa, 2021). Thus, the objective 

of our study is to explore regional disparities and the spatial pattern of environmental efficiency in the 

thermal power industry across China. 

The Dagum Gini coefficient (Dagum, 1997) is employed to gauge the level of inequality among different 

groups and to discern the contributions of various factors to the overall gap (Miao et al., 2021; Wang & Xu, 
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2021; Lv et al., 2021a). In order to identify the primary causes of regional disparities in the thermal power 

industry, we utilized the Dagum Gini Index decomposition method. Additionally, the interplay between 

resource allocation, economic development, and the output, technology, and pollution of thermal power 

plants varies across regions in China (Wang & Feng, 2013). Disparities also exist in economic, political, and 

thermal power generation modes across different regions (Li et al., 2017; Xie et al., 2021; Chen et al., 2021), 

with each region experiencing a unique combination of production factors, population migration, technology, 

and knowledge diffusion (Wang et al., 2014; Qin et al., 2019; Wu & Hu, 2021). 

To examine the impact of adjacent regions' efficiency levels on a province's efficiency and trend (Lv et al., 

2021a; Wang & Xu, 2021), we employed the Spatial Markov chain (Quah, 1996; Rey, 2001). Investigating 

whether the environmental efficiency of thermal power generation in China is converging or diverging and 

whether external factors affect the efficiency level or necessitate self-regulation by the market or national 

regulation is crucial. Cui et al. (2022) utilized a convergence model to analyze the spatiotemporal 

heterogeneity of carbon emissions among regions, while Wang & Zhang (2021) observed that China's green 

development performance diverged through absolute β convergence and conditional β convergence methods. 

The stochastic convergence test is applied to determine whether there is stochastic convergence in the 

evolution of the environmental efficiency of China's thermal power generation industry. Understanding the 

convergence or divergence of environmental efficiency in thermal power generation among regions or 

provinces is essential for devising relevant policies. 

This study makes distinctive and valuable contributions by bridging the research gap pertaining to 

environmental efficiency in China's thermal power industry. We achieve this by conducting a thorough 

analysis of regional disparities, spatial patterns, and trend evolution. Furthermore, we introduce a 

comprehensive and systematic approach for measuring environmental efficiency in the industry, utilizing an 

innovative super efficiency SBM-DDF integration model. This model enables a more robust evaluation of 

the industry's environmental performance. 

The remainder of this paper is organized as follows. Section 2 introduces the related methods. Section 3 

presents data. Section 4 elaborates the empirical study conducted in this study. Finally, Section 5 draws the 

conclusion. 

 

2. Methods 

2.1 Super efficiency SBM-DDF integration model 

Charnes et al. (1978) introduced DEA with the assumption of constant returns to scale, while Banker et al. 

(1984) proposed a novel model, assuming variable returns to scale. However, these traditional DEA models 

have limitations as they overlook the slackness of variables and fail to account for all invalid DMUs. To 

address these shortcomings, Tone (2003) incorporated slack variables into the objective function, presenting 
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a non-radial, non-directed SBM model that considered undesired outputs. Nonetheless, this model had the 

drawback of being unable to distinguish the effective decision-making units (DMUs) accurately, resulting in 

imprecise evaluation outcomes. Subsequently, Tran et al. (2019) introduced the OneSupSBM model to 

address this concern effectively. Nevertheless, the OneSupSBM model had two disadvantages: it did not 

consider undesirable outputs and solely focused on constant returns to scale (CRS) models. To overcome 

these limitations, this paper proposes an improved integration model that enhances the OneSupSBM model. 

The newly developed integrated model combines SBM-DDF with a super-efficiency SBM-DDF, offering a 

comprehensive and refined estimation of the thermal power industry's environmental efficiency across the 

30 provinces under study. 

2.1.1 SBM-DDF model 

DMUj is used to represent the set of decision-making units. The input and output elements of the set decision-

making units are expressed as follows. The input N  is 1 2
( , , , )t t t N

N
x x x x R ; the desirable output M  is 

1 2
( , , , )t t t M

M
y y y y R ; and the undesirable output K  is 1 2

( , , , )t t t K

K
b b b b R . The parameter ( , , )t t t

j j j
x y b  is 

the input-output data for the t  period of the thj  region. The parameter ( , , )x y bg g g  is a directional vector, 

with a strictly positive value. In this paper, the direction vector is set as ( , , )x y b ; the parameter ( , , )x y b

n m k
s s s  is 

the slack vector of input, desirable output, and the undesirable output to reach the efficiency frontier, 

respectively. 
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The parameter t

j
  is a non-negative vector. In this model, all input-output data are positive; that is, 
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0, 0, 0t t t

nj mj kj
x y b . The target value is less than or equal to 1. The parameter *=1

o  denotes a valid DMU; 

and *<1
o  denotes an invalid DMU, which needs to be improved. 

2.1.2 Super efficiency SBM-DDF model 
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In these expressions, , ,x y b

n m k
z z z   are slack variables of input, desirable output, and undesirable output 

respectively. The parameter   t

j
  is a non-negative vector; and t t t

n m k
x y b    represent decision variables of 

input, desirable output, and undesirable output, respectively. 

2.1.3 Integration model 

Combining our own work and the work of Tran et al. (2019), we generated the integrated model of SBM-

DDF and super-efficient SBM-DDF. This model directly generates the efficiency score of invalid DMUs and 

the super efficiency score of effective DMUs by solving the one-stage model, as shown in Fig. 1. 
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Figure 1 Explanation of the forward and reverse two-stage method and one-stage method 
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The integration model is described as follows: 
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In these expressions, M  is a large positive number; and 
1 j

, 
2 j

are non-negative vectors of the SBM-DDF 

model and super-efficient SBM-DDF model, respectively. The objective function is used to measure the 

efficiency score of DMU,  0
1 1 1

1 1
1

2 2
=

x y bN M K
n m k
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z z z

N g g gM K
  for the super efficiency score of 

valid DMU, and 0
1 1 1

1 1
1

2 2
=

x y bN M K
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n m kn m k

s s s

N g g gM K
 for the efficiency score of invalid DMU. In the 

objective function, we use the binary variable 0;1  to transform the efficiency measurement of the 

SBM-DDF model and the super-efficiency SBM-DDF model. If 1 , the super efficiency SBM-DDF 
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model is selected to calculate the super efficiency score 0  of valid DMU. If 0 , the SBM-DDF model 

is selected as the calculated efficiency score 0  of invalid DMU. Appendix explains how the one-stage 

integration model can adaptively identify the SBM-DDF model or the super-efficient SBM-DDF model 

based on the value of . 

2.2 Dagum Gini coefficient 

In this paper, the Dagum Gini coefficient and its decomposition method were used to describe the regional 

disparities of environmental efficiency of China's thermal power industry in the six regions. According to 

Dagum (1997), the Gini coefficient is defined as:  

1 1 1 1

22 2

j h
n nk k

ji hr
j h i r

y y

G
Y n y

  (4) 

where G  is the total Gini ratio; and   is the total Gini mean difference. For example, with respect to the 

environmental efficiency of thermal power generation,   is the mean value of the absolute value of every 

two levels of efficiency difference. Assume there are n   provinces, divided into k   subgroups (regions). 

Then, 
j
n ( h
n ) is the number of provinces in the   th thj h（ ） subgroup (region). The parameter 

ji
y ( hr
y ) is the 

environmental efficiency of thermal power generation in th thi r（ ）province (or municipalities, autonomous 

regions) of the   th thj h（ ）  subgroup (region), 1,2,...,j k  , 1,2,...,h k  , 1,2,...,
j

i n  , 1,2,...,
h

r n  . The 

parameter y   is the average value of environmental efficiency for the thermal power generation in all 

provinces of China. 

Dagum (1997) described a new method for decomposing the Gini ratio, decomposing the ratio into three 

parts: the contribution of the gap within the subgroup w
G , the contribution of the gap between subgroups 

nb
G  , and the contribution of hyper-variable density t

G  . The relationship of the three parts satisfies 

w nb t
G G G G . Before decomposing the Gini ratio, the first step is to rank the regions according to the 

mean environmental efficiency of thermal power generation in each subgroup (region): 
h j k
Y Y Y . 

In this expression, ,
j h
Y Y  represent the mean environmental efficiency of thermal power generation of the 
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,th thj h  subgroup (region), respectively. 

Eq. (5) describes the Dagum decomposition method and calculation method in detail. The parameters 
jj
G  

and 
jh
G  represent the Gini ratio within a subgroup and the Gini ratio between subgroups, respectively; and 

jj
  defines the mean difference of Gini ratio within thj   subgroup. Similarly, 

jh
 defines the mean 

difference of Gini ratio between thj   and thh   subgroups. According to Dagum (1997), the concept of 

economic prosperity, 
jh
D  can be defined as the relative effectivity degree of thermal power environmental 

efficiency between thj   and thh   subgroups. The parameter 
jh
d   is defined as the disparity of efficiency 

level between subgroups; it is the mathematical expectation of the sum of all 0
ji hr
y y  sample values 

between subgroups thj  and thh . The parameter 
jh
p  is defined as the super variable first-order distance, 

which is the mathematical expectation of the sum of all 0
hi jr
y y  sample values between subgroups thj  

and thh . 
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2.3 Spatial Markov chain 

The Markov chain is mainly used to analyze the internal dynamics and evolution process of variables (Quah, 

1996). In this study, a Markov transfer matrix was constructed to describe the dynamic evolution of the 

environmental efficiency level of thermal power generation in each region. The Markov chain is the state 

space of a random process ( , )X t t T . We assume the random variable t
X j ; in other words, the system 

state in t  period is j . Its value is a finite set; its spatial state is { , , }I i j ; and the Markov chain of the 

system satisfies Eq. (6). This indicates that the probability that random variable X  is in state j  in period 

1t  only depends on its state in period t . 

 
1 0 0 1 1 2 2 -1 -1

1

| , , , , ,

|
t t t t

t t

ij

P X j X i X i X i X i X i

P X j X i

P

  (6) 

We assume that 
ij
P  is the transfer probability of the environmental efficiency of thermal power generation 

in a province from state i  in year t  to state j  in year 1t . Using the maximum likelihood estimation 
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method: 

 ij

ij
i

n
P

n
  (7) 

where 
ij
n  refers to the number of all provinces in the sample period that are transferred from state i  in 

year t  to state j  in year 1t ; and i
n  refers to the number of all provinces in state i  throughout the 

sample period. 

The transition of random variables from one state to another is called state transition. Assuming there is a 

total of k  states, then we can construct a transition probability matrix of k k . Then, the state transition 

probability 
ij
P  refers to the probability of transition from state i  to state j . The k k  matrix of all 

ij
P  

is the state transition probability matrix P . The transition probability matrix is then used to determine the 

distribution dynamic evolution trend of each region in the economic system. The efficiency level of a region 

is affected by the efficiency level of neighboring regions, that is, the approximate values of random variables 

have an aggregation effect in space. 

In this study, we applied the spatial Markov chain method, introducing the concept of spatial lag, to consider 

the spatial and geographical interaction effect of environmental efficiency of thermal power generation in 

China (Rey, 2001). The spatial lag value is the spatial weighting of the surrounding efficiency level of each 

province. We calculate the lag value based on the following equation: 

    ( )r sr sF w y s r   (8) 

where rF  is the spatial lag value of province r ; sy  is the efficiency value of province s ; and srW  is a 

spatial weight matrix. If other provinces border province r , then 1srw ; otherwise, 0srw . The Spatial 

Markov chain decomposes the traditional k k   transfer probability matrix into the k k k   matrix. 

Therefore, ijP  becomes the probability of a province changing from t  year state i  to 1t  year state 

j  in the case of spatial lag type k . This can reveal the impact of the space effect on the regional thermal 

power environmental efficiency gap. 

2.4 Stochastic convergence test 

China's thermal power generation industry is categorized as a traditional high-energy consumption sector, 

leading to the production of polluting gases such as carbon dioxide and sulfur dioxide. Prolonged and large-

scale emissions of these pollutants exacerbate the greenhouse effect. The conventional development 

approach has inflicted significant environmental damage and deviates from the principles of sustainable 

development. Therefore, it is imperative to enhance the environmental efficiency of thermal power 
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generation, curtail carbon emissions, and steer it towards a more sustainable trajectory that aligns with 

economic development, social stability, and environmental protection. However, achieving this convergence 

is challenging due to economic disparities among regions, varying resource endowments, and different 

economic development models, resulting in imbalanced environmental efficiency levels in thermal power 

generation across regions. 

To evaluate the potential of long-term convergence and non-convergence in environmental efficiency, we 

employ the stochastic convergence method. The unit root test, initially proposed by Carlino et al. (1996) and 

Evans et al. (1996), serves as the primary methodology for examining the overall convergence of China's 

thermal power generation environmental efficiency at both national and regional levels. 

The stochastic convergence needs to meet the following equation: 

 
,k

1

1
lim , 1,2, ,

n

t i t k t k i i
i

E y y i n
n

  (9) 

In this study, two panel unit root test methods were utilized: the IPS test (IM, 2003) and the Hadri test (Hadri, 

2000). The IPS test assumes that all series have unit roots, whereas the Hadri test presumes that all series are 

stationary. However, it is crucial to note that rejecting the original hypothesis based on the IPS test does not 

necessarily mean that all series are stable, and vice versa, rejecting the original hypothesis using the Hadri 

test does not imply that all series have unit roots. Relying solely on a single criterion as the test standard can 

jeopardize the reliability of empirical findings. To address this concern, Choi (2002) proposed the use of the 

confirmatory analysis (CA) method, which allows for a more robust conclusion by comparing results from 

various types of panel unit root tests. This approach can result in four potential situations, as outlined in 

Table 1, thereby enhancing the accuracy and credibility of our empirical findings. 

 

Table 1 Situation and conclusions associated with the confirmatory analysis method 

Situation Test for rejection of assumptions Conclusion 

Ⅰ 
IPS test and Hadri test failed to reject the 

original hypothesis. 

We cannot judge the stability of the 

sequence. 

Ⅱ 

The IPS test rejects the hypothesis that the 

sequence possesses a unit root, while the 

Hadri test does not provide sufficient 

evidence to reject the original hypothesis that 

the sequence is stable. 

Time series are stationary stochastic 

processes; that is, there is stochastic 

convergence among variables. 

Ⅲ 

IPS test does not reject the possibility of a 

unit root for all series, while the Hadri test 

significantly rejects the original hypothesis of 

All series have unit roots and there is 

random divergence among variables. 
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stationarity. 

Ⅳ 
The IPS test and Hadri test both reject the 

original hypothesis. 

This may be due to the random 

divergence or convergence of some 

series. The conclusion is not clear. 

 

3. Data 

In this study, we categorized the 30 provinces of China into six regions using the geographical divisions 

defined by the National Bureau of Statistics of the People's Republic of China in 2011 (see Fig. 2). The 

regions are as follows: North China, Northeast China, East China, Central China, Northwest China, and 

South China. The data used for analysis spanned from 2006 to 2015. However, due to missing data, we 

excluded Taiwan, Hong Kong, Macao, and Tibet from the study. The data were collected from the China 

Statistical Yearbook as our primary source. 

 

Figure 2 China is divided into six areas for this study 

 

The input, desirable output, and undesirable output were defined as follows: 

(1) Input: Input variables include the labor force, installed capacity of thermal power generation, and energy 

consumption. Due to the unavailability of labor input data in the thermal power industry, labor in the power, 

heat, and supply industries, published in the 2007-2016 China Statistical Yearbook, were used in place of 

labor in the thermal power industry. Data on installed capacity of thermal power generation were collected 
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from the China Power Yearbook. Fuels include coal, oil, and natural gas. Total energy consumption data 

were converted to standard coal. Data on coal, oil, and gas were collected from the China Energy Statistics 

Yearbook. 

(2) Desirable output: The desirable output was thermal power generation. Power generation is the most 

important indicator of the power industry and reflects the operation efficiency of the power industry (Lam 

et al., 2001). This paper set the provincial thermal power generation as the expected output, and the data 

were collected from the China Energy Statistics Yearbook. 

(3) Undesirable output: Undesired outputs included 2CO  and 2SO  emissions. The 2SO emission data for 

the thermal power industry were collected from the annual report of China's environmental statistics1. There 

is no direct statistical monitoring data source on 2CO  emissions, so this paper used three kinds of fossil 

fuel (coal, oil and natural gas) consumption to calculate regional 2CO  emissions. The equation is as follows: 

 
44

12
it ijt j jC E CEF COR   (10) 

where itC   represents the 2CO  emissions generated by the fuel required by the region i   thermal power 

industry in year t  . The parameter ijtE  represents the fuel consumption j   of region i   thermal power 

industry in year t . The parameter jCEF  is the carbon emission factor of fuel j ; and jCOR  is the carbon 

oxidation rate of fuel j . The data related to jCEF and jCOR  are shown in Table 2, which is consistent 

with Liu et al. (2016). Table 3 shows the descriptive statistics of input-output variables of China's thermal 

power industry from 2006 to 2015. 

 

Table 2 Carbon emission factors and carbon oxidation rate associated with the consumption of three energy types 

Type of energy consumption Coal Petroleum Natural gas 

Carbon emission factors (CEF) 0.75 0.58 0.44 

Carbon oxidation rate (COR) 0.90 0.98 0.99 

Note: the unit is 10000 tons of carbon / 10000 tons of standard coal. 

 
1 From 2016, the annual report of China's environmental statistics does not provide the data of SO2 emission.  
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Table 3 Descriptive statistics of input and output in 2006-2015 

Variable Input Desirable 

Output 

Undesirable  

Output 

Labor Installed 

capacity 

Energy 

consumption 

Thermal 

power 

generation 

2CO

Emissions 

2SO

Emissions 

Mean 11.35 2466.04 3851.10 114.85 9462.96 27.81 

Max 32.18 8754.00 14461.26 450.21 35822.20 93.31 

Min 1.20 152.00 285.82 7.20 618.81 0.10 

S.D. 6.05 1909.43 3053.32 92.86 7519.70 20.94 

Note: the unit of installed capacity is 10,000 kW, the unit of labor force of thermal power is 10,000 persons, the energy 

consumption is expressed in 10000 tons of standard coal, the unit of power generation is TWH, and the unit of SO2, CO2 emissions 

is 10000 tons. 

 

4. Empirical study 

4.1 Environmental efficiency evaluation results 

We applied the super efficiency SBM-DDF integration model to measure the environmental efficiency of 

China's thermal power industry in 2006-2015. We also analyzed the environmental efficiency levels and their 

changing trends in the six regions. 

The box diagram in Fig. 3 displays the environmental efficiencies of thermal power industry in China's 

provinces from 2006 to 2015. Overall, the environmental efficiency levels were high for Shanghai (0.9264), 

Ningxia (0.9548), Beijing (0.9612), Tianjin (0.9632), Qinghai (0.9944) and Hainan (1.0000). This may be 

because there were fewer thermal power plants in these areas and the pollution caused by thermal power 

generation was small, or because the energy conservation and environmental protection measures taken in 

these areas were better. Therefore, with the same expected output, undesired output was less and efficiency 

was higher. These results closely relate to their significant development levels in the categories of the 

economy, society, technology and environmental protection. The environmental efficiency levels were lower 

for (0.5865), Liaoning (0.5806), Sichuan (0.4975), Inner Mongolia (0.3966), Guizhou (0.5068), Shandong 

(0.4504) and Henan (0.3847). This may be due to the early development of the thermal power industry in 

these regions, which mainly relied on traditional high-polluting power generation methods, resulting in 

excessive carbon dioxide and sulfur dioxide emissions and low environmental efficiency. 
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Figure 3 Environmental efficiency box diagram of the thermal power industry in the 30 provinces of China 

 

 

Figure 1 The changing trend in the environmental efficiency of the thermal power industry in the six regions of China from 2006 

to 2015 
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Fig. 4 shows the changing trend of environmental efficiency for the thermal power industry in six regions of 

China from 2006 to 2015. The overall environmental efficiency of the six regions showed an upward trend 

from 2006 to 2015, with as national average environmental efficiency value of 0.7376. From a regional 

perspective, the environmental efficiency value of the eastern region was the highest, at 0.8689, followed by 

the northwest region (0.8576), and the south region (0.7323). The indices for North China (0.6727), 

Northeast China (0.6585), and Central China (0.6370) were all lower than 0.7. The central region had the 

lowest index of all regions. 

4.2 Regional disparity results 

To identify the main sources of regional disparities, the Gini coefficient and decomposition method proposed 

by Dagum (1998) was used to calculate the environmental efficiency of thermal power generation in China 

from 2006 to 2015. The decomposition was done for six regions: North, Northeast, East, Central, Northwest, 

and South China. The calculation results are shown in Table 4.  

Table 4 Dagum Gini coefficient and decomposition results of environmental efficiency 

         2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Total 0.191 0.175 0.165 0.139 0.141 0.153 0.138 0.132 0.127 0.111 

Intra- group 

disparities 

North  0.225  0.237  0.221  0.192  0.192  0.239  0.209  0.168  0.167  0.141  

Northeast 0.047  0.079  0.079  0.071  0.060  0.081  0.056  0.048  0.042  0.022  

East 0.085  0.071  0.058  0.044  0.049  0.035  0.032  0.009  0.019  0.019  

Central 0.189  0.156  0.168  0.138  0.118  0.079  0.095  0.102  0.088  0.081  

Northwest 0.117  0.117  0.107  0.097  0.089  0.072  0.071  0.043  0.064  0.035  

South 0.212  0.166  0.147  0.101  0.090  0.134  0.116  0.119  0.107  0.102  

Inter-group 

disparities 

N/NE 0.200  0.203  0.198  0.163  0.166  0.222  0.174  0.150  0.149  0.172  

N/E 0.188  0.188  0.189  0.168  0.197  0.203  0.204  0.160  0.156  0.097  

N/C 0.241  0.231  0.227  0.192  0.187  0.225  0.184  0.160  0.156  0.176  

N/NW 0.236  0.223  0.212  0.176  0.186  0.196  0.185  0.148  0.153  0.107  

N/S 0.230  0.211  0.210  0.176  0.183  0.214  0.191  0.154  0.153  0.137  

NE/E 0.089  0.091  0.103  0.122  0.165  0.203  0.178  0.203  0.181  0.162  

NE/C 0.149  0.145  0.143  0.128  0.107  0.085  0.084  0.092  0.077  0.068  

NE/NW 0.175  0.175  0.160  0.135  0.141  0.141  0.131  0.166  0.142  0.129  

NE/S 0.180  0.144  0.128  0.109  0.102  0.140  0.125  0.106  0.097  0.107  

E/C 0.165  0.149  0.148  0.142  0.164  0.183  0.159  0.186  0.178  0.165  

E/NW 0.138  0.126  0.099  0.078  0.077  0.076  0.067  0.038  0.055  0.038  

E/S 0.171  0.137  0.123  0.093  0.112  0.134  0.117  0.151  0.134  0.094  

C/NW 0.257  0.236  0.205  0.163  0.152  0.125  0.123  0.149  0.143  0.132  

C/S 0.225  0.184  0.177  0.146  0.121  0.131  0.122  0.119  0.108  0.118  

NW/S 0.217  0.183  0.157  0.115  0.113  0.114  0.105  0.129  0.116  0.086  

Contributio

n rate 

wG  14.45 14.56 14.58 14.30 13.17 12.68 12.97 11.45 11.94 11.45 

nbG  41.81 41.19 41.38 44.36 51.65 51.13 58.49 61.61 59.37 61.34 

tG  43.74 44.25 44.04 41.34 35.18 36.19 28.54 26.94 28.68 27.22 
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Note: “N” “NE” “E” “C” “NW” “S” refers to North China, Northeast China, East China, Central China, Northwest China, and 

South China, respectively. The unit of contribution rate is %. 

4.2.1 Result of the overall regional gap  

The data presented in Table 4 demonstrate a descending fluctuating trend in the overall Gini coefficient of 

China's thermal power generation environmental efficiency throughout the study period, with an average 

value of 0.147. Analyzing the changing trend, it is observed that from 2006 to 2009, the overall gap in China's 

thermal power generation environmental efficiency experienced a downward movement, particularly during 

2008-2009, resulting in a decreased value of 0.026. Subsequently, from 2009 to 2010, there was an upward 

trend in the environmental efficiency of thermal power generation in China, followed by a year-to-year 

decrease in 2011 and 2015. 

Fig. 5 provides a visual representation of the ten-year period from 2006 to 2015, illustrating that the 

maximum overall disparity in environmental efficiency of thermal power generation in China was recorded 

in 2006 with a value of 0.191, while the minimum value of 0.111 was observed in 2015. This indicates a 

substantial reduction of 72.2% in the overall disparity compared to 2006, highlighting a significant decline 

in regional disparities by the end of the study period. 

The findings suggest that the overall disparity in environmental efficiency related to thermal power 

generation in China witnessed a considerable decrease over the course of the decade. Notably, the reduction 

in regional disparities became more pronounced in the later years, reflecting increased national attention to 

the environmental impact of thermal power generation. 
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Figure 2 Intra-group disparities in emission efficiency 

 

4.2.2 Results of intra-group disparity  

Fig. 5 provides an overview of the trends in intra-group disparities among the six regions in China, revealing 

a general downward trend. Over the ten-year period from 2006 to 2015, eastern China exhibited the smallest 

gap in thermal power generation environmental efficiency, with an average value of only 0.042. This 

represents a substantial reduction of 77.7% and an annual decrease of 8.6%. In contrast, North China 

displayed the largest intra-group disparity, with an average value of 0.199. Although this region experienced 

a reduction of 37.3% in the gap and an annual decrease of 4.1%, it still maintained a higher average intra-

group disparity compared to the national average of 0.147. This highlights the persistent issue of unbalanced 

development in North China. The low environmental efficiency of thermal power generation in Shanxi and 

Inner Mongolia in North China could be attributed to excessive emissions or underdeveloped thermal power 

generation technology. 

The gaps in environmental efficiency of thermal power generation in Central China exhibited significant 

fluctuations, but the intra-group gap within this region experienced a total reduction of 57.4% and an annual 

decrease of 6.4%. Southern China saw a 52% overall reduction in the intra-group gap, with an annual 

decrease of 5.8%. Notably, the gap reached its minimum value of 0.09 in 2010. 

In contrast, the intra-group gaps in thermal power generation environmental efficiency remained relatively 
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stable in Northeast China and Northwest China. The gaps in these regions decreased by 53.4% and 70.1%, 

respectively, with an average annual decrease of 5.9% and 7.8%, respectively. Specifically, notable 

improvements were observed in the environmental efficiency of thermal power generation in provinces such 

as Liaoning, Heilongjiang, Shaanxi, Guangdong, Guangxi, and Guizhou. The disparities in efficiency levels 

can be attributed to differences in the scale of thermal power generation, varying policies for the adoption 

and promotion of new technologies in thermal power generation, and the level of attention given to 

environmental pollution caused by thermal power generation by the public and regional governments. 

4.2.3 Results of inter-group disparity results 

The environmental efficiency of thermal power generation in China exhibited a general downward trend 

during the study period, with an average value of 0.151. Among the regions, the inter-group disparity 

between Eastern and Northwest China was the lowest, with an average value of 0.079. The regional gap in 

environmental efficiency of thermal power generation in Eastern China experienced a significant downward 

trend throughout the study period, with a maximum average annual decrease of 8.1% and a total decrease of 

72.5% over ten years. This can be attributed to the implementation of emission reduction policies, the 

development of green financial policies, and the adoption of clean energy sources, which led to the 

transformation and upgrading of the thermal power industry in the region and a reduction in the undesired 

outputs of thermal power generation, ultimately improving environmental efficiency. 

Except for Shaanxi Province, the efficiency levels of other regions in Northwest China remained above 0.8, 

and Shaanxi Province witnessed a significant improvement in environmental efficiency over the study 

decade. Fig. 6 provides further insight into the regional gap and its evolutionary trend in thermal power 

generation environmental efficiency. The disparities in environmental efficiency between the listed regions 

exhibited a downward trend with fluctuations throughout the study period, except for the gap between the 

northeast and eastern regions. The data presented in Table 4 indicate that the regional disparity in thermal 

power generation environmental efficiency increased by 82% over the study decade, with an average value 

of 0.150 between Northeast and Eastern China, and an annual increase in the regional gap by 9.1%. 

This result may be attributed to the implementation of emission reduction policies in the eastern region over 

the ten-year study period, resulting in a significant increase in environmental efficiency within the region. 

Throughout the study decade, the efficiency levels of Liaoning Province and Heilongjiang Province 

improved, except for Jilin Province. However, the rate of improvement was not as fast as in the eastern 

region, leading to an increasingly significant gap with the eastern region. Fig. 6 illustrates the disparity in 

the inter-group gap in environmental efficiency of thermal power generation, highlighting the uneven 

development levels between regions. 
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Figure 3 Inter-group disparities of environmental efficiency 

 

4.2.4 Contribution analysis of regional disparity  

Fig. 7 presents the sources of regional disparities in environmental efficiency regarding thermal power 

generation in China and the evolution of their contribution rates over the study period. The analysis reveals 

that the main driver of the gap is the inter-group disparity, accounting for an average contribution rate of 

51.23%, which is more than three times higher than the contribution rate of the intra-group disparity at 

13.15%. The contribution rate of the inter-group disparity exhibits a fluctuating upward trend, with an 

average annual growth of 5.19%. In contrast, the intra-group disparity and hyper-variable density display a 

downward trend. The contribution rate of the intra-group disparity decreases by 2.31% annually, while the 

contribution rate of the hyper-variable density decreases by 4.2% annually. 
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Figure 4. Contribution of regional disparities in environmental efficiency 

Note: the contribution of the intra-group disparity 
wG , the contribution of the inter-group disparity  

nbG , and the contribution 

of hyper-variable density
tG . 

 

These findings highlight that the disparity between groups is the primary driver of the overall regional 

disparity in environmental efficiency regarding thermal power generation in China. Therefore, reducing 

disparities between different groups is crucial for addressing regional imbalances. Moreover, the contribution 

rate of the hyper-variable density represents the impact of cross-term statistics on the overall efficiency 

disparity among the six subgroups (regions) in China. It reflects the contribution of the interaction between 

the disparity between groups and the disparity within groups to the overall efficiency disparities. The 

declining trend of the contribution rate of the hyper-variable density indicates that the interaction of 

disparities within and between groups gradually weakened over the study period. 

4.3 Dynamic evolution results 

4.3.1 Results of traditional Markov chain 

We investigate the use of the traditional Markov chain and spatial Markov chain method to study the internal 

dynamics of environmental efficiency distribution of thermal power generation in China, and analyze the 

dynamic transfer characteristics of those efficiency levels. The study refers to the research ideas of Pu Ying-

Xia, combined with the level of environmental efficiency of thermal power generation in China. The 

provinces in the previously defined six regions were divided into five types, listed in Table 5, according to 

their respective efficiency values (Qin et al., 2020): (1) lower than 0.50 (low efficiency level provinces – 

VL); (2) between 0.50 and 0.65 (low to medium efficiency level provinces - L); (3) between 0.65 and 0.80 
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(medium efficiency level provinces - M); (4) between 0.80 and 0.95 (high efficiency level provinces - H); 

(5) greater than or equal to 0.95 (very high efficiency level provinces - VH).  

 

Table 5 Classification of environmental efficiency 

 VL L M H VH 

Environmental efficiency of 

thermal power generation in 

China 

<=0.50 0.50~0.65 0.65~0.80 0.80~0.95 >=0.95 

Number of provinces met 

condition 42 54 80 62 62 

 

Table 6 Markov chain transfer probability matrix of environmental efficiency 

t/t+1 in  VL L M H VH 

VL 42 0.667  0.310  0.000  0.000  0.024  

L 49 0.082  0.694  0.204  0.000  0.020  

M 74 0.014  0.014  0.770  0.176  0.027  

H 55 0.000  0.000  0.091  0.709  0.200  

VH 50 0.000  0.000  0.020  0.100  0.880  

 

Table 6 presents the maximum likelihood estimation of the transfer probability of environmental efficiency 

in thermal power generation across different regions in China. The transfer stability and transfer path exhibit 

certain patterns. The elements on the main diagonal indicate the probability of a province maintaining its 

current efficiency level without any increase or decrease in the next period. The elements outside the main 

diagonal represent the probability of a province transitioning from its current state to another state. The 

findings from the Markov chain analysis in Table 6 yield the following results: 

(1) The transfer probability on the main diagonal is relatively high. Provinces with medium and high 

environmental efficiency levels in thermal power generation have the highest probability of maintaining their 

previous efficiency levels, at 77% and 88% respectively. Provinces with other efficiency levels also have a 

probability of more than 65% of maintaining their previous levels. As a result, the overall distribution of 

environmental efficiency in thermal power generation across different regions remains relatively stable, with 

most provinces staying at their previous efficiency levels. 

(2) Non-diagonal transfer probabilities are not all zero. Some probabilities are distributed on both sides of 

the diagonal, indicating that certain provinces may experience a transfer of environmental efficiency in 

thermal power generation to an adjacent level in two consecutive years. 
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(3) Some off-diagonal transfer probabilities are scattered and not concentrated around the diagonal. This 

suggests significant changes in environmental efficiency of thermal power generation in certain provinces, 

indicating the possibility of multilevel transitions in environmental efficiency. For instance, 2.4% of 

provinces with a low efficiency level rapidly improve to a high efficiency level, 2% of provinces at the 

middle and low efficiency level quickly increase to a high efficiency level, 1.4% of provinces at the middle 

efficiency level drop to a low efficiency level, and 2.7% rapidly increase to a high efficiency level, while 2% 

of provinces at a high efficiency level decrease to a medium efficiency level. 

(4) The probabilities of upward and downward non-diagonal transfers are asymmetric. In other words, the 

probability of an efficiency level improvement in the next year is significantly higher than the probability of 

a decline, particularly in the middle efficiency level, where the probability of upward transfer is more than 

12 times higher than the probability of downward transfer. 

These results indicate that in the later years of the study period, provinces in China made efforts to improve 

the environmental efficiency of thermal power generation, yielding some positive outcomes. However, the 

traditional Markov chain analysis does not consider the spatial interaction between regions and does not 

explain the spatial mechanism of regional efficiency convergence or divergence. 

4.3.2 Result of spatial Markov chain 

Table 7 presents a spatial Markov chain transfer matrix that incorporates the spatial lag effect, allowing for 

an exploration of the influence of neighboring provinces' efficiency environment on the environmental 

efficiency level of regional thermal power generation. The specific features observed are as follows: 

(1) The neighboring environment significantly impacts the environmental efficiency of regional thermal 

power generation. In the spatial Markov matrix, the probabilities on the main diagonal are notably higher 

than those in other positions. This suggests that, when considering the neighbor environment, the 

environmental efficiency of thermal power generation in China demonstrates a high level of club stability 

throughout the research period. This matrix differs significantly from the traditional Markov matrix, further 

confirming the substantial influence of the neighbor environment on regional economic development. Table 

7 reveals that neighbors have the most significant impact on a specific region when the efficiency level is 

high. When neighboring regions exhibit high efficiency levels, samples tend to remain at medium or high 

efficiency levels without transitioning. When the neighbor has a low efficiency level, there is a 22.2% 

probability of an upward transfer from a low efficiency level and a 28.6% probability from a low-middle 

efficiency level. The probability of upward and downward transfers from the medium efficiency level is 

7.1%, suggesting the occurrence of cross-regional transfers. Furthermore, there is a 20% probability of a 

downward jump from the high efficiency level. 

(2) Spatial correlation plays a crucial role in the environmental efficiency of thermal power generation. The 

probability of an upward transfer from a low efficiency level to adjacent regions with low or low-middle 

efficiency levels is 22.2% and 35.7%, respectively. When neighboring regions exhibit a high level of 
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environmental efficiency in thermal power generation, the probability of an upward transfer from a low 

efficiency level region is highest, reaching 60%. In the traditional Markov chain, the maximum probability 

of an upward transfer from a low-efficiency area is 31%, significantly lower than in the spatial Markov chain. 

This highlights the important role of spatial correlation in the environmental efficiency of regional thermal 

power generation. Regions with low environmental efficiency in thermal power generation can enhance their 

efficiency more effectively when surrounded by a more developed regional environment. 

(3) The neighbor environment also exerts some influence on regions with a high level of efficiency in thermal 

power generation. Table 7 reveals that, when adjacent regions have a low or medium-low efficiency 

environment, the region with a high efficiency level experiences the largest probability (20%) of a downward 

transfer compared to other neighbor environments. This value is also higher than the probability of a high 

efficiency level transitioning to a low efficiency level or a low-medium efficiency level in the traditional 

Markov matrix. This indicates that the neighbor environment also impacts regions with a high efficiency 

level. 

Overall, these findings demonstrate that the neighbor environment significantly affects the environmental 

efficiency of thermal power generation in regions. Spatial correlation and the efficiency levels of neighboring 

regions play important roles in determining the upward or downward transfers of efficiency levels. 

Table 7 Transfer probability matrix of the spatial Markov chain for environmental efficiency 

Lag value t/t+1 in  VL L M H VH 

VL 

VL 9 0.778 0.222 0 0 0 

L 7 0 0.714 0.286 0 0 

M 14 0.071 0.071 0.714 0.071 0.071 

H 0 0 0 0 0 0 

VH 5 0 0 0 0.200 0.800 

L 

VL 14 0.643 0.357 0 0 0 

L 18 0.056 0.611 0.278 0 0.056 

M 30 0 0 0.900 0.100 0 

H 12 0 0 0 0.833 0.167 

VH 5 0 0 0.200 0.200 0.600 

M 

VL 14 0.786 0.214 0 0 0 

L 19 0.105 0.789 0.105 0 0 

M 18 0 0 0.833 0.167 0 

H 23 0 0 0.043 0.739 0.217 

VH 21 0 0 0 0.095 0.905 

H VL 5 0.200 0.600 0 0 0.200 
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L 5 0.200 0.600 0.200 0 0 

M 12 0 0 0.417 0.500 0.083 

H 19 0 0 0.211 0.579 0.211 

VH 15 0 0 0.000 0.067 0.933 

VH 

VL 0 0 0 0 0 0 

L 0 0 0 0 0 0 

M 0 0 0 0 0 0 

H 1 0 0 0 1 0 

VH 4 0 0 0 0 1 

 

4.4 Stochastic convergence test 

The confirmatory analysis provides a more cautious explanation for the panel unit root test results, and 

generates a more robust conclusion. Therefore, Stata 15 was used for the analysis, using the confirmatory 

analysis method to assess whether there is stochastic convergence in the environmental efficiency with 

respect to thermal power generation in China. 

4.4.1 Global random convergence test 

Rejection of the null hypothesis of convergence for the whole panel does not rule out the existence of 

convergence in subgroups of the panel (Du, 2017). Table 8 shows that, even at the 10% significance level, 

the IPS test still rejects the original hypothesis of the unit root, and Hadri test significantly rejects the original 

hypothesis of stationarity. This belongs to the fourth case in confirmatory analysis, which indicates that the 

confirmatory analysis does not prove the existence of global random convergence trend and divergence trend, 

relative to the national average. This may be due to the random divergence of partial series and the random 

convergence of partial series.  

 

Table 8 Confirmatory analysis results 

Region IPS Prob Hadri Prob CA result 

All of China -8.2159 0 7.2445 0 Ⅳ 

North -4.4665 0 0.9859 0.1621 Ⅱ 

Northeast -2.3513 0.0094 1.3173 0.0939 IV 

East -2.8382 0.0023 3.4968 0.0002 Ⅳ 
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Central -4.8473 0 3.9030 0 Ⅳ 

Northwest -3.0905 0.0010 1.8437 0.0326 Ⅳ 

South -2.1712 0.0150 3.6282 0.0001 Ⅳ 

 

We further applied the ADF, PP, and KPSS univariate unit root test methods to determine whether there is a 

convergence trend with respect to thermal power environmental efficiency in some provinces. Table 9 

indicates that, according to the ADF test results, among the 30 provinces investigated, data for only 7 

provinces reject the original hypothesis of the unit root. Of these, Shandong, Henan, Gansu, Qinghai Ningxia 

and Guangdong show significant results at a 1% significance level; and Xinjiang shows significant results 

at a 10% significance level. The environmental efficiency sequence of thermal power generation in the other 

23 provinces do not reject the original hypothesis of the unit root.  

 

Table 9 Univariate unit root test 

Province ADF PP KPSS Province ADF PP KPSS 

Beijing -0.168 -2.069 0.133* Henan -4.819*** -7.648*** 0.148** 

Tianjin -1.847 -2.496 0.115 Hubei -1.986 -2.672 0.0805 

Hebei -1.543 -2.611 0.116 Hunan -0.183 -1.300 0.140* 

Shanxi -1.428 -1.700 0.0914 Chongqing -2.196 -2.646 0.0967 

Inner 

Mongolia 
-0.921 -2.019 0.101 Sichuan -0.841 0.7451 0.120* 

Shandong -5.601*** -2.871 0.0842 Shaanxi -2.211 -2.345 0.102 

Liaoning -0.147 -2.707 0.145* Gansu -4.163*** -2.625 0.089 

Jilin -2.279 -10.954*** 0.0576 Qinghai -8.841*** -2.634 0.058 

Heilong-

jiang 
-2.239 -3.749** 0.0807 Ningxia -7.157*** -1.798 0.123* 

Shanghai -0.465 -1.677 0.123* Xinjiang -3.354* -4.373*** 0.0736 

Jiangsu -2.180 -1.088 0.139* Guangdong -8.083*** -2.242 0.124* 

Zhejiang -0.230 -1.326 0.130* Guangxi -0.144 -1.809 0.111 

Anhui -0.523 -1.162 0.126* Hainan -0.445 -2.888 0.117 

Fujian -1.852 -1.422 0.114 Guizhou -2.890 -3.074 0.118 

Jiangxi -0.441 -0.627 0.142* Yunnan -1.178 -1.623 0.107 

 

For the PP test, among the 30 provinces investigated, only 4 provinces rejected the original hypothesis of the 

existence of the unit root. Of these, the results for Jilin, Henan and Xinjiang show significance at a 1% 
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significance level; and Heilongjiang shows significance at a 5% significance level. However, the 

environmental efficiency series of thermal power generation in other 25 provinces do not reject the original 

hypothesis of unit root.  

For the KPSS test, of the 30 provinces investigated, 12 provinces did not meet the original hypothesis of 

stationarity; 18 provinces met the original hypothesis of stationarity, including Anhui, Beijing, Chongqing, 

Guangdong, Henan, Hunan, Jiangsu, Jiangxi, Liaoning, Ningxia, Shanghai and Zhejiang. These tests indicate 

that if the global random divergence of regions given in the confirmatory analysis is not determined, there 

may still be stochastic convergence of environmental efficiency with respect to thermal power generation in 

some provinces. In other words, global random divergence cannot negate the possibility of convergence 

subset. 

4.4.2 Club identification based on stochastic convergence 

In this study, the regional means of the six regions were used as benchmarks to assess the random 

convergence of each region. Table 8 presents the results, indicating that, at a 10% statistical significance 

level, the IPS test did not reject the possibility of unit roots in all series. Conversely, the Hadri test rejected 

the original hypothesis of stationarity, falling into the third case of confirmatory analysis. This implies that 

provinces exhibit random divergence in relation to their regional means. For North China, the IPS test 

rejected the original hypothesis of unit roots, while the Hadri test did not reject the hypothesis of stationarity 

for all series. This falls under the second case of confirmatory analysis, suggesting that all time series are 

stationary random processes, and the regional mean value of each province reflects stochastic convergence. 

However, both the IPS test and Hadri test in the northeast, eastern, central, northwest, and southern regions 

rejected the original hypothesis, placing them in the fourth case of confirmatory analysis. This suggests the 

possibility of random divergence and convergence in some series. In the evolutionary process of 

environmental efficiency in thermal power generation in China, it is possible to form random convergence 

clubs. The convergence clubs within other regions require further identification. 

The sequential analysis method used by Choi (2002) for identifying random convergence subsets has certain 

limitations. For instance, the selection of the initial prior information set is subjective. To address these 

limitations, a full subset analysis path is employed to identify the convergence clubs of environmental 

efficiency in thermal power generation within each region. The subsequent tables present the identification 

results of random convergence clubs at a 10% statistical significance level in five regions. 

Table 10 reveals that the subset consisting of Shanghai, Zhejiang, and Anhui in the eastern region tends to 

converge towards its regional mean. The addition of other provinces to this subset would disrupt its 

convergence. Table 11 shows that Jiangxi, Hubei, Hunan, Chongqing, and Sichuan constitute a random 

convergence subset within the central region. Table 12 demonstrates that Gansu, Qinghai, and Xinjiang form 

a random convergence subset within the northwest region. Table 13 highlights that Guangdong and Hainan 

form a random convergence subset within the southern region. Lastly, Table 14 indicates that Jilin and 
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Heilongjiang form a random convergence subset within the Southeast region. 

In conclusion, the evolutionary process of environmental efficiency in thermal power generation in China 

exhibits a stochastic convergence club, and there may be convergence subsets within regions that experience 

random divergence. 

 

Table 10 Results of random convergence club test in Eastern China 

Region P-IPS P-Hadri CA Region P-IPS P-Hadri CA 

E1 0.0023 0.0002 IV E6=E1-Shanghai 0.2002 0.0003 III 

E2=E1-Fujian 0.2374 0.0002 III E7=E2-Anhui 0.5062 0.0000 III 

E3=E1-Anhui 0.5311 0.0000 III E8=E3-Fujian 0.5062 0.0000 III 

E4=E1-Zhejian 0.4195 0.0000 III E9=E4-Fujian 0.7192 0.0000 III 

E5=E1-Jiangsu 0.1491 0.0719 III E10=E5-Fujian 0.0399 0.4678 II 

Note: E1 includes Shanghai, Jiangsu, Zhejiang, Anhui and Fujian 

Table 11 Results of random convergence club test in Central China 

Region P-IPS P-Hadri CA Region P-IPS P-Hadri CA 

C1 0.0000 0.0000 IV C5=C1-Hubei 0.0000 0.0002 IV 

C2=C1-Sichuan 0.0005 0.0000 IV C6=C1-Hunan 0.0000 0.0002 IV 

C3=C1-Chongqing 0.0000 0.0002 IV C7=C1-Henan 0.0004 0.2246 II 

C4=C1-Jiangxi 0.0000 0.0001 IV     

Note: C1 includes Jiangxi, Henan, Hubei, Hunan, Chongqing and Sichuan 

 

Table 12 Results of random convergence club test in Northwest China 

Region P-IPS P-Hadri CA Region P-IPS P-Hadri CA 

W1 0.0010 0.0326 IV W5=W1-Shaanxi 0.0087 0.0457 IV 

W2=W1-Xinjiang 0.0169 0.0168 IV W6=W5-Xinjiang 0.0033 0.0024 IV 

W3=W1-Ningxia 0.1551 0.1566 I W7=W5-Ningxia 0.0087 0.5056 II 

W4=W1-Qinghai 0.1492 0.0103 III     

Note: W1 includes Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang 
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Table 13 Results of random convergence club test in Southern China 

Region P-IPS P-Hadri CA Region P-IPS P-Hadri CA 

N1 0.0150 0.0001 IV N6=N1-Guangdong 0.0796 0.0004 IV 

N2=N1-Yunnan 0.0013 0.0037 IV N7=N4-Yunnan 0.0043 0.0052 IV 

N3=N1-Guizhou 0.0000 0.0023 IV N8=N4-Guangxi 0.1405 0.0020 III 

N4=N1-Hainan 0.0244 0.0021 IV N9=N8-Guizhou 0.0000 0.0053 IV 

N5=N1-Guangxi 0.0011 0.0005 IV N10=N8-Yunnan 0.0000 0.3847 II 

Note: N1 includes Guangdong, Guangxi, Hainan, Guizhou and Yunnan 

 

Table 14 Results of random convergence club test in Southeast China 

Region P-IPS P-Hadri CA Region P-IPS P-Hadri CA 

S1 0.0094 0.0939 IV S6=S1-Jilin 0.1232 0.2131 I 

S5=S1-

Heilongjiang 
0.0655 0.0336 IV S10=S8-Liaoning 0.0251 0.4220 II 

Note: S1 includes Liaoning, Jilin and Heilongjiang 

 

5. Conclusions and policy implication  

This study presents a novel approach by introducing a super efficiency SBM-DDF integrated model to 

accurately distinguish decision-making units and calculate the environmental efficiency of thermal power 

generation in 30 provinces of China from 2006 to 2015. The analysis utilizes various methods such as the 

Dagum Gini coefficient and its decomposition method, spatial Markov chain, and a stochastic convergence 

test to examine efficiency levels, spatial dynamics, convergence patterns, and regional disparities in China's 

thermal power industry. 

The key findings of the study are as follows. Firstly, the environmental efficiency of thermal power 

generation across the six regions of China exhibited steady growth over the study period, with the eastern 

region being the most efficient. Secondly, the overall Gini ratio of China's thermal power generation 

environmental efficiency demonstrated a general downward trend with slight fluctuations, averaging at 0.147. 

Notably, the intra-group disparity in the eastern region experienced the most significant decline, with an 

average annual rate of 8.6%. On the other hand, the intra-group disparity in North China showed the least 

reduction, with an average annual rate of 4.1%. The main driver of regional disparities in environmental 

efficiency was the inter-group disparity. Thirdly, the analysis of the spatial dynamic evolution pattern using 

the spatial Markov chain revealed a significant spatial dependence and notable spatial imbalance in the 

environmental efficiency of thermal power generation in China. Lastly, the study identified the existence of 
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a stochastic convergence club in the evolution of environmental efficiency, particularly in North China where 

the efficiency tended to converge towards a common mean value. Convergence subsets were also observed 

in other regions characterized by random divergence or where convergence or divergence could not be 

definitively determined. 

To promote balanced regional development in thermal power generation environmental efficiency, it is 

crucial to consider the unique characteristics and circumstances of each region. Strengthening multilateral 

technical cooperation and exploring the full potential of thermal power generation environmental efficiency 

in each region are essential. Regions should leverage their specific industry and resource advantages while 

fostering cooperation and exchanging technological innovations with neighboring provinces. By doing so, 

the overall growth of thermal power environmental efficiency can be facilitated. 

 

References 

[1] Baumol, William J. (1986). Productivity growth, convergence, and welfare: what the long-run data show. American Economic 

Review, 76(5), 1072-1085. 

[2] Bi, G. B., Song, W., Zhou, P., & Liang, L. (2014). Does environmental regulation affect energy efficiency in China's thermal 

power generation? Empirical evidence from a slacks-based DEA model. Energy Policy, 66, 537-546. 

[3] BP. (2021). Statistical Review of World Energy. 

[4] Carlino, G. A., & Mills, L. (1996). Testing neoclassical convergence in regional incomes and earnings. Regional Science and 

Urban Economics, 26(6), 565-590. 

[5] Chen, Z., Zhang, X., & Chen, F. (2021). Do carbon emission trading schemes stimulate green innovation in enterprises? 

Evidence from China. Technological Forecasting and Social Change, 168, 120744. 

[6] Choi, C. Y. (2002). A Variable Addition Panel Test for Stationarity and Confirmatory Analysis. mimeo Department of 

Economics, University of New Hampshire. 

[7] Costa, M. (2021). The Gini Index Decomposition and Overlapping Between Population Subgroups. In Gini Inequality Index 

(pp. 63-91). Chapman and Hall/CRC. 

[8] Cui, Y., Khan, S. U., Deng, Y., & Zhao, M. (2022). Spatiotemporal heterogeneity, convergence and its impact factors: 

Perspective of carbon emission intensity and carbon emission per capita considering carbon sink effect. Environmental 

Impact Assessment Review, 92, 106699. 

[9] Dagum, C. (1998). A new approach to the decomposition of the Gini income inequality ratio. In Income Inequality, Poverty, 

and Economic Welfare (pp. 47-63). Physica-Verlag HD. 

[10] Du, K. (2017). Econometric convergence test and club clustering using Stata. Stata Journal, 17(4), 882-900. 

[11] Evans, P., & Karras, G. (1996). Convergence revisited. Journal of Monetary economics, 37(2), 249-265. 

[12] Halkos, G., & Bampatsou, C. (2022). Measuring environmental efficiency in relation to socio-economic factors: A two stage 

analysis. Economic Analysis and Policy, 76, 876-884. 

[13] Hadri, K. (2000). Testing for stationarity in heterogeneous panel data. The Econometrics Journal, 3(2), 148-161. 

[14] Hu, Y. (2012). Energy conservation assessment of fixed-asset investment projects: An attempt to improve energy efficiency 

in China. Energy Policy, 43, 327-334. 

[15] Huang, L., Hu, J., Chen, M., & Zhang, H. (2017). Impacts of power generation on air quality in China—part I: an 

overview. Resources, Conservation and Recycling, 121, 103-114. 

[16] Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1), 

53-74. 

[17] Lam, P. L., & Shiu, A. (2001). A data envelopment analysis of the efficiency of China’s thermal power generation. Utilities 

Policy, 10(2), 75-83. 

[18] Li, J., & Lin, B. (2017). Does energy and CO2 emissions performance of China benefit from regional integration. Energy 

Policy, 101, 366-378. 



 

Socia l  Sciences  in  Business  and Pol icy  Analys is  Vol .2 ,  No.1 ,  2024 

 

63 

 

[19] Liu, Y., Zhao, G., & Zhao, Y. (2016). An analysis of Chinese provincial carbon dioxide emission efficiencies based on energy 

consumption structure. Energy Policy, 96, 524-533. 

[20] Lau, P. L., & Koo, T. T. (2022). Multidimensional decomposition of Gini elasticities to quantify the spatiotemporality of 

travel and tourism distribution. Tourism Management, 88, 104422. 

[21] Lv, C., Bian, B., Lee, C. C., & He, Z. (2021a). Regional gap and the trend of green finance development in China. Energy 

Economics, 102, 105476. 

[22] Lv, C., Shao, C., & Lee, C. C. (2021b). Green technology innovation and financial development: Do environmental regulation 

and innovation output matter?. Energy Economics, 98, 105237. 

[23] Miao, Z., Chen, X., & Baležentis, T. (2021). Improving energy use and mitigating pollutant emissions across “Three Regions 

and Ten Urban Agglomerations”: A city-level productivity growth decomposition. Applied Energy, 283, 116296. 

[24] National Bureau of Statistics. (2021). China Electric Power Yearbook. 

[25] Qin, Q., Jiao, Y., Gan, X., & Liu, Y. (2019). Environmental efficiency and market segmentation: An empirical analysis of 

China’s thermal power industry. Journal of Cleaner Production, 242, 118560. 

[26] Qin, Q., Yan, H., Liu, J., Chen, X., & Ye, B. (2020). China’s agricultural GHG emission efficiency: regional disparity and 

spatial dynamic evolution. Environmental Geochemistry and Health, 44, 2863–2879. 

[27] Quah, D. T. (1996). Twin peaks: growth and convergence in models of distribution dynamics. The Economic Journal, 

106(437), 1045-1055. 

[28] Rey, S. J. (2001). Spatial empirics for economic growth and convergence. Geographical Analysis, 33(3), 195-214. 

[29] Romero-Avila, D. (2008). A confirmatory analysis of the unit root hypothesis for OECD consumption-income ratios. Applied 

Economics, 40(17), 2271-2278. 

[30] Song, M., & Wang, J. (2018). Environmental efficiency evaluation of thermal power generation in China based on a slack-

based endogenous directional distance function model. Energy, 161, 325-336. 

[31] Song, M. L., & Wang, S. H. (2014). DEA decomposition of China’s environmental efficiency based on search algorithm. 

Applied Mathematics and Computation, 247, 562-572. 

[32] State Power Investment Group Co., Ltd. China International Economic Exchange Center (CIEEC). (2021). China Carbon 

Peak Carbon Neutral Progress Report. 

[33] State Council of China (SCC). (2016). State Council Integrated work programme for the 13th five-year plan for energy 

conservation and emissions reduction. Available at: <http://www.gov.cn/zhengce/content/2017-01/05/content_5156789.htm > 

[accessed December 2016]. 

[34] Tran, T. H., Mao, Y., Nathanail, P., Siebers, P. O., & Robinson, D. (2019). Integrating slacks-based measure of efficiency and 

super-efficiency in data envelopment analysis. OMEGA, 85, 156-165. 

[35] Wang, F., & Feng, G. F. (2013). Evaluation of China’s regional energy and environmental efficiency based on DEA window 

model. China Industrial Economics, 7, 56-68. 

[36] Wang, J., Dong, Y., & Jiang, H. (2014). A study on the characteristics, predictions and policies of China’s eight main power 

grids. Energy Conversion and Management, 86, 818-830. 

[37] Wang, K., Lee, C. Y., Zhang, J., & Wei, Y. M. (2018a). Operational performance management of the power industry: A 

distinguishing analysis between effectiveness and efficiency. Annals of Operations Research, 268(1-2), 513-537. 

[38] Wang, K., Wei, Y. M., & Huang, Z. (2018b). Environmental efficiency and abatement efficiency measurements of China's 

thermal power industry: A data envelopment analysis based materials balance approach. European Journal of Operational 

Research, 269(1), 35-50.  

[39] Wang, S., Wang, J., Fang, C., & Feng, K. (2019). Inequalities in carbon intensity in China: A multi-scalar and multi-

mechanism analysis. Applied Energy, 254, 113720. 

[40] Wu, S., Hu, S., & Frazier, A. E. (2021). Spatiotemporal variation and driving factors of carbon emissions in three industrial 

land spaces in China from 1997 to 2016. Technological Forecasting and Social Change, 169, 120837. 

[41] Xie, L., Li, Z., Ye, X., & Jiang, Y. (2021). Environmental regulation and energy investment structure: Empirical evidence 

from China's power industry. Technological Forecasting and Social Change, 167, 120690. 

[42] Xie, L., Zhou, Z., & Hui, S. (2022). Does environmental regulation improve the structure of power generation technology? 

Evidence from China's pilot policy on the carbon emissions trading market (CETM). Technological Forecasting and Social 

Change, 176, 121428. 

[43] Yang, L., Ouyang, H., Fang, K., Ye, L., & Zhang, J. (2015). Evaluation of regional environmental efficiencies in China based 

on super-efficiency-DEA. Ecological Indicators, 51, 13-19.


